Locally Administered Adipose-Derived Stem Cells Accelerate Wound Healing through Differentiation and Vasculogenesis

Author:

Nie Chunlei1,Yang Daping2,Xu Jin3,Si Zhenxing2,Jin Xiaoming4,Zhang Jiewu1

Affiliation:

1. Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China

2. Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China

3. Department of Cell Biology, Harbin Medical University, Harbin, China

4. Department of Pathology, Harbin Medical University, Harbin, China

Abstract

Despite advances in wound closure techniques and devices, there is still a critical need for new methods of enhancing the healing process to achieve optimal outcomes. Recently, stem cell therapy has emerged as a new approach to accelerate wound healing. Adipose-derived stem cells (ASCs) hold great promise for wound healing, because they are multipotential stem cells capable of differentiation into various cell lineages and secretion of angiogenic growth factors. The aim of this study was to evaluate the benefit of ASCs on wound healing and then investigate the probable mechanisms. ASCs characterized by flow cytometry were successfully isolated and cultured. An excisional wound healing model in rat was used to determine the effects of locally administered ASCs. The gross and histological results showed that ASCs significantly accelerated wound closure in normal and diabetic rat, including increased epithelialization and granulation tissue deposition. Furthermore, we applied GFP-labeled ASCs on wounds to determine whether ASCs could differentiate along multiple lineages of tissue regeneration in the specific microenvironment. Immunofluorescent analysis indicated that GFP-expressing ASCs were costained with pan-cytokeratin and CD31, respectively, indicating spontaneous site-specific differentiation into epithelial and endothelial lineages. These data suggest that ASCs not only contribute to cutaneous regeneration, but also participate in new vessels formation. Moreover, ASCs were found to secret angiogenic cytokines in vitro and in vivo, including VEGF, HGF, and FGF2, which increase neovascularization and enhance wound healing in injured tissues. In conclusion, our results demonstrate that ASC therapy could accelerate wound healing through differentiation and vasculogenesis and might represent a novel therapeutic approach in cutaneous wounds.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 299 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3