The Potential of Bone Marrow Stem Cells to Correct Liver Dysfunction in a Mouse Model of Wilson's Disease

Author:

Allen Katrina J.1,Cheah Daphne M. Y.1,Lee Xiao Ling1,Pettigrew-Buck Nicole E.1,Vadolas Jim1,Mercer Julian F. B.2,Ioannou Panayiotis A.1,Williamson Robert1

Affiliation:

1. Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Department of Paediatrics University of Melbourne, Royal Children's Hospital, Parkville, Victoria, 3052, Australia

2. Centre for Cell and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria, 3125, Australia

Abstract

Metabolic liver diseases are excellent targets for correction using novel stem cell, hepatocyte, and gene therapies. In this study, the use of bone marrow stem cell transplantation to correct liver disease in the toxic milk (tx) mouse, a murine model for Wilson's disease, was evaluated. Preconditioning with sublethal irradiation, dietary copper loading, and the influence of cell transplantation sites were assessed. Recipient tx mice were sublethally irradiated (4 Gy) prior to transplantation with bone marrow stem cells harvested from normal congenic (DL) littermates. Of 46 transplanted tx mice, 11 demonstrated genotypic repopulation in the liver. Sublethal irradiation was found to be essential for donor cell engraftment and liver repopulation. Dietary copper loading did not improve cell engraftment and repopulation results. Both intravenously and intrasplenically transplanted cells produced similar repopulation successes. Direct evidence of functionality and disease correction following liver repopulation was observed in the 11 mice where liver copper levels were significantly reduced when compared with mice with no liver repopulation. The reversal of copper loading with bone marrow cells is similar to the level of correction seen when normal congenic liver cells are used. Transplantation of bone marrow cells partially corrects the metabolic phenotype in a mouse model for Wilson's disease.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3