Phenotype-Specific Cells with Proliferative Potential are Produced by Polyethylene Glycol-Induced Fusion of Mouse Embryonic Stem Cells with Fetal Cardiomyocytes

Author:

Takei Shunsuke1,Yamamoto Makoto1,Cui Li1,Yue Fengming1,Johkura Kohei1,Ogiwara Naoko1,Iinuma Hisae2,Okinaga Kota2,Sasaki Katsunori1

Affiliation:

1. Department of Anatomy and Organ Technology, Shinshu University School of Medicine, 3–1–1 Asahi, Matsumoto 390–8621, Japan

2. Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan

Abstract

Because cardiomyocytes lose the ability to divide upon differentiation, myocardial failure is assumed to be generally irreversible. For terminal cardiac insufficiency, the potential for regenerative treatment by stem cells, especially embryonic stem (ES) cells, offers hope for the future. Recent studies showed that stem cells fuse spontaneously with cells remaining in damaged tissues, and restore tissue function. To imitate spontaneous fusion in vivo, we used polyethylene glycol (PEG) in vitro to fuse mouse ES cells and fetal cardiomyocytes and analyzed the cytochemical properties of the fused cells. Confocal laser scanning microscopy coupled with lipophilic dye labeling of the living cell membranes showed that there were fused cells of ES cells and cardiomyocytes after PEG treatment. By flow cytometry, the fusion efficiency between ES cells and cardiomyocytes was estimated to be about 45% of the total resulting cells. When green fluorescent protein (GFP)-expressing ES cells were fused with cardiomyocytes, the fused cells had immunoreactivity for GFP in their cytoplasm and cardiac troponin I in their myofibrils. Some of these cells also expressed proliferating cell nuclear antigen up to 11 days after fusion, the last time point examined. This study shows that PEG-induced fusions of mouse ES cells and cardiomyocytes have the cardiomyocyte phenotype and proliferation potential.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3