1,25-Dihydroxyvitamin D3 Increases the Transplantation Success of Human Muscle Precursor Cells in SCID Mice

Author:

Stephan Lionel1,Bouchentouf Manaf1,Mills Philippe1,Lafreniere Jean-François1,Tremblay Jacques P.1

Affiliation:

1. Unité de Génétique Humaine, Centre de Recherche du CHUL, Université Laval, Québec, Canada

Abstract

Human muscle precursor cell (hMPC) transplantation is a potential therapy for severe muscle trauma or myopathies. Some previous studies demonstrated that 1,25-dihydroxyvitamin-D3 (1,25-D3) acted directly on myoblasts, regulating their proliferation and fusion. 1,25-D3 is also involved in apoptosis modulation of other cell types and may thus contribute to protect the transplanted hMPCs. We have therefore investigated whether 1,25-D3 could improve the hMPC graft success. The 1,25-D3 effects on hMPC proliferation, fusion, and survival were initially monitored in vitro. hMPCs were also grafted in the tibialis anterior of SCID mice treated or not with 1,25-D3 to determine its in vivo effect. Graft success, proliferation, and viability of transplanted hMPCs were evaluated. 1,25-D3 enhanced proliferation and fusion of hMPCs in vitro and in vivo. However, 1,25-D3 did not protect hMPCs from various proapoptotic factors (in vitro) or during the early posttransplantation period. 1,25-D3 enhanced hMPC graft success because the number of muscle fibers expressing human dystrophin was significantly increased in the TA sections of 1,25-D3-treated mice (166.75 ± 20.64) compared to the control mice (97.5 ± 16.58). This result could be partly attributed to the improvement of the proliferation and differentiation of hMPCs in the presence of 1,25-D3. Thus, 1,25-D3 administration could improve the clinical potential of hMPC transplantation currently developed for muscle trauma or myopathies.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3