MicroRNAs Regulation Modulated Self-Renewal and Lineage Differentiation of Stem Cells

Author:

Liu Shih-Ping12,Fu Ru-Huei13,Yu Hsiu-Hui1,Li Kuo-Wei1,Tsai Chang-Hai45,Shyu Woei-Cherng13,Lin Shinn-Zong136

Affiliation:

1. Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan

2. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan

3. Department of Immunology, China Medical University, Taichung, Taiwan

4. Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan

5. Department of Healthcare Administration, Asia University, Taichung, Taiwan

6. China Medical University Beigang Hospital, Yunlin, Taiwan

Abstract

Stem cells are unique cells in the ability that can self-renew and differentiate into a wide variety of cell types, suggesting that a specific molecular control network underlies these features. To date, stem cells have been applied to many clinical therapeutic approaches. For example, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are the cells responding to ischemia or injury and engage in effective revascularization to repair within impairment regions. Transplantation of MSCs after stroke and hindlimb ischemia results in remarkable recovery through enhancing angiogenesis. MicroRNAs are a novel class of endogenous, small, noncoding RNAs that work via translational inhibition or degradation of their target mRNAs to downregulate gene expression. MicroRNAs have been strongly linked to stem cells, which have a remarkable role in development. In this study, we focused on the microRNA regulation in multiple stem cells. For example, miR-520h was upregulated and miR-129 was downregulated in HSC. MiR-103, 107, 140, 143, 638, and 663 were associated with MSCs while miR-302s and miR-136 were associated with ESCs. In NSCs, miR-92b, let-7, and miR-125 were the critical regulators. This overview of the recent advances in the aspects of molecular control of stem cell biology reveals the importance of microRNAs, which may be helpful for future work.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3