A Transformed Cell Population Derived from Cultured Mesenchymal Stem Cells has no Functional Effect after Transplantation into the Injured Heart

Author:

Furlani Dario1,Li Wenzhong1,Pittermann Erik1,Klopsch Christian1,Wang Liang1,Knopp Agnes2,Jungebluth Philipp3,Thedinga Elke4,Havenstein Carolin1,Westien Ingeborg1,Ugurlucan Murat1,Li Ren-Ke5,Ma Nan1,Steinhoff Gustav1

Affiliation:

1. Department of Cardiac Surgery, University Rostock, Rostock, Germany

2. Division of Hematology and Oncology, University Rostock, Rostock, Germany

3. Department of General Thoracic Surgery, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain

4. Bionas GmbH, Rostock, Germany

5. Division of Cardiovascular Surgery, Toronto General Hospital and the University of Toronto, Toronto, Canada

Abstract

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent cells characterized by their self-renewal and differentiation potential. Accumulating clinical and preclinical evidence indicate MSCs are a promising cell source for regenerative medical therapies. However, undesirable immortalization, spontaneous transformation, and tumorigenic potential from long-term cultured MSCs have been reported in human and mouse. We report rat MSCs isolated from young donors could undergo transformation in early passage culture. We aimed to characterize the transformed population and determine their therapeutic effects after intracardiac transplantation in the infarcted myocardium. MSCs were isolated from bone marrow of Lewis rats according to standard protocols and cultured under standard conditions. Phenotype of growing cells was assessed by flow cytometry. Following acute myocardial infarction in rats, cells were delivered by intracardiac injection. Cardiac functions were assessed by pressure–volume loops. Infarction size and pathologic effects were evaluated after 6 weeks. The abnormal colonies were detected in culture as early at passage 3. They were noted to appear as distinctly different morphology from typical MSCs, which changed from a normal elongated spindle shape to a compact abnormal morphology. They exhibited rapid cell proliferation. Some subclones lost contact inhibition of cell division and formed multilayer aggregates. Chromosomal instability was detected. They were devoid of surface markers CD29, CD44, CD90, and CD117. Furthermore, there was no significant improvement on infarction size and cardiac function 6 weeks after cell transplantation. Our study highlights the need for establishment of biosafety criteria in regulating culture-expanded MSCs to achieve the full clinical therapeutic benefits.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3