Evaluating the performance of the Anwaralardh photovoltaic power generation plant in Jordan: Comparative analysis using artificial neural networks and multiple linear regression modeling

Author:

Alma'asfa Suhaib Ibrahim1ORCID,Fraige Feras Younes12ORCID,Abdul Aziz Mohd Sharizal3ORCID,Khor Chu Yee4ORCID,Al-Khatib Laila A5ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an, Jordan

2. Mining & Minerals Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an, Jordan

3. School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia

4. Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia

5. Environmental Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an, Jordan

Abstract

The global energy demand is rising, driven by population growth, economic development, and industrialization. Shifting towards renewable energy, like solar energy, is gaining momentum worldwide because of ecological concerns and resource depletion. This paper aims to utilize Artificial Neural Networks (ANNs) and multiple linear regression (MLR) modeling techniques to evaluate the productivity of 11 MW photovoltaic (PV) solar power plant currently operational in Jordan. The case study reveals that both models can be used to predict the daily, monthly, and yearly average power produced and system efficiency with reasonable accuracy. The ANN model exhibited promising results, where the best value for the coefficient of determination (R2) and mean absolute percentage error (MAPE) for training were 95.85% and 0.59%, respectively. However, R2 was 93.7%, and MAPE was 1.27% for validation tests. All these results were achieved using a 7-6-1 model, with a sample ratio of 1:1 for the data allocated in training and validation. When using multiple linear regression, the R2 and standard error values were 93.42% and 0.17%. On the other hand, the results showed that the yearly output power for actual and predicted by both models over the year was 24,399 MWh, 24,538 MWh, and 24,401 MWh, respectively. This research showed valuable results in the monthly output power for solar cells at the Anwaralardh PV power system project, contributing to a better understanding of solar energy generation in arid desert climates and emphasizing the potential of solar power plants to play a crucial role in achieving SDG 7 objectives.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3