Energy retrofit and climate adaptive design of dwellings in the hot arid climate: Trends and future challenges

Author:

Aldhaher Dunya Abdulazeez Gheni1ORCID,Selçuk Semra Arslan1ORCID

Affiliation:

1. Department of Architecture, Faculty of Architecture, Gazi University, TÜRKİYE, Turkey

Abstract

As long as buildings face various climate change impacts in recent decades, such as increased heat, particularly in the residential sector. Therefore, energy retrofit, and climate-adaptive designs may contribute significantly to climate change mitigation and adaptation strategies. At the same time, these strategies do not only improve the sustainability of dwellings/houses/residences but also contribute to broader goals of increasing energy efficiency, reducing environmental impact, offering economic benefits, and enhancing the community's resilience in the challenges they face impact from the effects of climate change. This study aims to examine and present the development of energy retrofitting, energy efficiency and climate-adaptive design for dwellings/ residential buildings in hot weather publications through bibliometric research. The research has been examined within the Web of Science™ Core Collection (W.O.S.) online database spanning from 2012 to November 2023 by using the "Title/Abstract/Keywords" category, and a comprehensive data visualisation has been conducted utilising the VOSviewer and CiteSpace programmes. The findings indicate the research trends in the literature and future challenges, and the results from these findings demonstrate the need for sustainable and energy-efficient buildings to preserve the environment and climate. These sustainable developments focus on improvements in energy retrofitting technologies, energy efficiency and saving targets, indoor thermal comfort, optimising passive design and minimising energy demand. This study will probably be a source to provide valuable insights for researchers, practitioners, experts, and policymakers to understand the implications of energy retrofitting and climate-adaptive design in hot arid climates. As well as it would offer theoretical and practical initiatives to be applied in this field.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3