Deep Learning Based Approach for Classification of Mushrooms

Author:

DEMİREL YağmurORCID,DEMİREL GözdeORCID

Abstract

Deep learning algorithms have produced amazing results in recent years when used to identify items in digital photographs. A deep learning technique is suggested in this work to classify mushrooms in their natural habitat. The study's objective is to identify the most effective method for categorizing mushroom images produced by well-known CNN models. This study will be helpful for the field of pharmacology, mushroom hunters who gather mushrooms in the wild, and it will help to lower the number of people who are at risk of becoming ill from poisonous mushrooms. Images are taken from data labelled by INaturalist specialist. The photographs show mushrooms in their natural environment and feature a variety of backgrounds. The "Mobilenetv2_GAP_flatten_fc" model, which was the study's top performer, had a training data set accuracy of 99.99%. It was 97.20% accurate in the categorization that was done using the validation data. Using the test data set, the classification accuracy was 97.89%. This paper presents the results of a performance comparison between the best-performing model and a multitude of state-of-the-art models that have undergone prior training. Mobilenetv2_GAP_flatten_fc model greatly outperformed the trained models, according to the precision, recall, F1 Score. This illustrates how the basic training process of the suggested model can be applied to enhance feature extraction and learning.

Publisher

Gazi University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3