Cortico–subcortical spatiotemporal dynamics in Parkinson’s disease can be modulated by transcranial alternating current stimulation

Author:

Liu Tiantian1,Yan Zilong2,Han Ziteng1,Zhang Jian3,Fang Boyan4,Yan Tianyi1

Affiliation:

1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China

2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

3. School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China

4. Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China

Abstract

Objective: We investigated changes in cortico–subcortical spatiotemporal dynamics to explore the treatment mechanisms of transcranial alternating current stimulation (tACS) in patients with Parkinson’s disease (PD). Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 20 patients with PD and 20 normal controls (NC). Each patient with PD received successive multidisciplinary intensive rehabilitation treatment and tACS treatment over a one-year interval. Individual functional brain network mapping and co-activation pattern (CAP) analysis were performed to characterize cortico–subcortical dynamics. Results: The same tACS electrode placement stimulated different proportions of functional brain networks across the participants. CAP analysis revealed that the visual network, attentional network, and default mode network co-activated with the thalamus, accumbens, and amygdala, respectively. The pattern characterized by the de-activation of the visual network and the activation of the thalamus showed a significantly low amplitude in the patients with PD than in NCs, and this amplitude increased after tACS treatment. Furthermore, the co-occurrence of cortico–subcortical CAPs was significantly higher in patients with PD than in NCs and decreased after tACS treatment. Conclusions: This study investigated cortico–subcortical spatiotemporal dynamics in patients with PD and further revealed the tACS treatment mechanism. These findings contribute to understanding cortico– subcortical dynamics and exploring noninvasive neuromodulation targets of cortico–subcortical circuits in brain diseases, such as PD, Alzheimer’s disease, and depression.

Publisher

Tsinghua University Press

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3