tRF-1:30-Gly-CCC-3 inhibits thyroid cancer via binding to PC and modulating metabolic reprogramming

Author:

Fu Bifei1,Lou YuMing1,Lu Xiaofeng1,Wu Zhaolin2,Ni Junjie1,Jin Cong1,Wu Pu3ORCID,Xu Chaoyang13ORCID

Affiliation:

1. Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China

2. Department of Anaesthesiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China

3. Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China

Abstract

tRFs and tiRNAs (tRNA-derived fragments) are an emerging class of small noncoding RNAs produced by the precise shearing of tRNAs in response to specific stimuli. They have been reported to regulate the pathological processes of numerous human cancers. However, the biofunction of tRFs and tiRNAs in the development and progression of papillary thyroid cancer (PTC) has not been reported yet. In this study, we aimed to explore the biological roles of tRFs and tiRNAs in PTC and discovered that a novel 5′tRNA-derived fragment called tRF-1:30-Gly-CCC-3 (tRF-30) was markedly down-regulated in PTC tissues and cell lines. Functionally, tRF-30 inhibited the proliferation and invasion of PTC cells. Mechanistically, tRF-30 directly bound to the biotin-dependent enzyme pyruvate carboxylase (PC), downregulated its protein level, interfered with the TCA cycle intermediate anaplerosis, and thus affected metabolic reprogramming and PTC progression. These findings revealed a novel regulatory mechanism for tRFs and a potential therapeutic target for PTC.

Funder

Project of Zhejiang Provincial Medical Health Science and Technology

Jinhua Science and Technology Research Program

Basic Research Foundation Project of Jinhua Central Hospital

Jinhua Public Welfare Technology Application Project Research

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3