Clec12a inhibits MSU-induced immune activation through lipid raft expulsion

Author:

Xu Ying1,Song Dingka12ORCID,Wang Wei3,Li Shixin4,Yue Tongtao3ORCID,Xia Tie1ORCID,Shi Yan15ORCID

Affiliation:

1. Institute for Immunology, School of Medicine, Tsinghua University

2. State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China

3. Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China

4. Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China

5. Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Canada

Abstract

Monosodium uric acid (MSU) crystal, the etiological agent of gout, has been shown to trigger innate immune responses via multiple pathways. It is known that MSU-induced lipid sorting on plasma membrane promotes the phosphorylation of Syk and eventually leads to the activation of phagocytes. However, whether this membrane lipid-centric mechanism is regulated by other processes is unclear. Previous studies showed that Clec12a, a member of the C-type lectin receptor family, is reported to recognize MSU and suppresses this crystalline structure-induced immune activation. How this scenario is integrated into the lipid sorting-mediated inflammatory responses by MSU, and particularly, how Clec12a intercepts lipid raft-originated signaling cascade remains to be elucidated. Here, we found that the ITIM motif of Clec12a is dispensable for its inhibition of MSU-mediated signaling; instead, the transmembrane domain of Clec12a disrupts MSU-induced lipid raft recruitment and thus attenuates downstream signals. Single amino acid mutagenesis study showed the critical role of phenylalanine in the transmembrane region for the interactions between C-type lectin receptors and lipid rafts, which is critical for the regulation of MSU-mediated lipid sorting and phagocyte activation. Overall, our study provides new insights for the molecular mechanisms of solid particle-induced immune activation and may lead to new strategies in inflammation control.

Funder

Joint Peking Tsinghua Center for Life Sciences

MOST | National Natural Science Foundation of China

State Key Program

Innovative Research Group Program

Canadian HIV Trials Network, Canadian Institutes of Health Research

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3