HR repair pathway plays a crucial role in maintaining neural stem cell fate under irradiation stress

Author:

Xu Xiao1,An Huanping12ORCID,Wu Cheng1,Sang Rong1,Wu Litao1,Lou Yuhan1,Yang Xiaohang13ORCID,Xi Yongmei1ORCID

Affiliation:

1. The Women’s Hospital, Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Development Disorders, School of Medicine, Zhejiang University

2. Key Laboratory of Clinical Molecular Biology of Hanzhong City, Hanzhong Vocational and Technique College, Hanzhong, China

3. Joint Institute of Genetics and Genomic Medicine, Between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China

Abstract

Environmental stress can cause mutation or genomic instability in stem cells which, in some cases, leads to tumorigenesis. Mechanisms to monitor and eliminate these mutant stem cells remain elusive. Here, using theDrosophilalarval brain as a model, we show that X-ray irradiation (IR) at the early larval stage leads to accumulation of nuclear Prospero (Pros), resulting in premature differentiation of neural stem cells (neuroblasts, NBs). Through NB-specific RNAi screenings, we determined that it is the Mre11–Rad50–Nbs1 complex and the homologous recombination (HR) repair pathway, rather than non-homologous end-joining pathway that plays, a dominant role in the maintenance of NBs under IR stress. The DNA damage sensor ATR/mei-41is shown to act to prevent IR-induced nuclear Pros in a WRNexo-dependent manner. The accumulation of nuclear Pros in NBs under IR stress, leads to NB cell fate termination, rather than resulting in mutant cell proliferation. Our study reveals an emerging mechanism for the HR repair pathway in maintaining neural stem cell fate under irradiation stress.

Funder

MOST | National Key Research and Development Program of China

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3