Single-cell whole-genome sequencing, haplotype analysis in prenatal diagnosis of monogenic diseases

Author:

Chang Liang1234ORCID,Jiao Haining5ORCID,Chen Jiucheng6ORCID,Wu Guanlin6,Liu Ping1234,Li Rong1234,Guo Jianying1234,Long Wenqing5,Tang Xiaojian5,Lu Bingjie6,Xu Haibin6ORCID,Wu Han6ORCID

Affiliation:

1. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital

2. National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)

3. Key Laboratory of Assisted Reproduction (Peking University)

4. Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China

5. Department of Obstetrics and Gynecology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

6. Unimed Biotech (Shanghai) Co., Ltd., Shanghai, China

Abstract

Monogenic inherited diseases are common causes of congenital disabilities, leading to severe economic and mental burdens on affected families. In our previous study, we demonstrated the validity of cell-based noninvasive prenatal testing (cbNIPT) in prenatal diagnosis by single-cell targeted sequencing. The present research further explored the feasibility of single-cell whole-genome sequencing (WGS) and haplotype analysis of various monogenic diseases with cbNIPT. Four families were recruited: one with inherited deafness, one with hemophilia, one with large vestibular aqueduct syndrome (LVAS), and one with no disease. Circulating trophoblast cells (cTBs) were obtained from maternal blood and analyzed by single-cell 15X WGS. Haplotype analysis showed that CFC178 (deafness family), CFC616 (hemophilia family), and CFC111 (LVAS family) inherited haplotypes from paternal and/or maternal pathogenic loci. Amniotic fluid or fetal villi samples from the deafness and hemophilia families confirmed these results. WGS performed better than targeted sequencing in genome coverage, allele dropout (ADO), and false-positive (FP) ratios. Our findings suggest that cbNIPT by WGS and haplotype analysis have great potential for use in prenatally diagnosing various monogenic diseases.

Funder

Natural Science Foundation of Beijing Municipality

National Clinical Research Center for Obstetrics and Gynecology

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3