Defective glycosylation and ELFN1 binding of mGluR6 congenital stationary night blindness mutants

Author:

Pindwarawala Mustansir1,Abid Faiyaz AK2,Lee Jaeeun1,Miller Michael L1,Noppers Juliet S1,Rideout Andrew P34,Agosto Melina A345ORCID

Affiliation:

1. Medical Sciences Program, Faculty of Science, Dalhousie University

2. Department of Microbiology and Immunology, Faculty of Science, Dalhousie University

3. Retina and Optic Nerve Research Laboratory, Dalhousie University

4. Department of Physiology and Biophysics, Dalhousie University

5. Department of Ophthalmology and Visual Sciences, Dalhousie University

Abstract

Synaptic transmission from photoreceptors to ON-bipolar cells (BCs) requires the postsynaptic metabotropic glutamate receptor mGluR6, located at BC dendritic tips. Binding of the neurotransmitter glutamate initiates G protein signaling that regulates the TRPM1 transduction channel. mGluR6 also interacts with presynaptic ELFN adhesion proteins, and these interactions are important for mGluR6 synaptic localization. The mechanisms of mGluR6 trafficking and synaptic targeting remain poorly understood. In this study, we investigated mGluR6 missense mutations from patients with congenital stationary night blindness (CSNB), which is associated with loss of synaptic transmission to ON-BCs. We found that multiple CSNB mutations in the extracellular ligand-binding domain of mGluR6 impart a trafficking defect leading to lack of complex N-glycosylation but efficient plasma membrane insertion, suggesting a Golgi bypass mechanism. These mutants fail to bind ELFN1, consistent with lack of a necessary modification normally acquired in the Golgi. The same mutants were mislocalized in bipolar cells, explaining the loss of function in CSNB. The results reveal a key role of Golgi trafficking in mGluR6 function, and suggest a role of the extracellular domain in Golgi sorting.

Funder

Alcon | Alcon Research Institute

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Dalhousie Medical Research Foundation

Canada Foundation for Innovation

Publisher

Life Science Alliance, LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3