Three-parameters Gumbel Distribution: Formulation and Parameter Estimation

Author:

Okumu Otieno Kevin1,Ouno Omondi Joseph1,Karanjah Anthony Nyutu2,Muthiga Samuel Nganga1

Affiliation:

1. Department of Mathematics and Physical Sciences, School of Science, Maasai Mara University, Narok, Kenya

2. Department of Mathematics, Multimedia University, Nairobi, Kenya

Abstract

Modeling extreme value theories is really gaining interest in the world with scientist working to improve the flexibility of the distributions by adding parameter(s). Extreme value distributions are always described to include families of Gumbel, Weibull and Frechet distributions. Of the three distributions, Gumbel distribution is the most commonly used in the extreme value theory analysis. Existing literature has shown that the addition of parameter to a distribution makes it robust and/or more flexible hence the study intends to improve the existing two parameters Gumbel distribution using the Marshall and Olkin proposed method for introducing a new estimator/parameter to an existing distribution. The developed distribution will be important to the applications in some life time studies like high temperature, earthquakes, network designs, horse racing, queues in supermarket, insurance, winds, risk management, ozone concentration, flood, engineering and financial concepts. The parameters for the introduced distribution was estimated using Maximum Likelihood Estimation method. The introduced three parameters Gumbel distribution is a probability distribution function which can be used in modelling statistical data. The maximum likelihood estimates for the three parameters namely shape, location and dispersion are efficient, sufficient and consistent and this makes the function more flexible and better for application. The three parameters Gumbel distribution can be used in modeling and analysis of normal data, skewed data and extreme data since it will provide efficient, sufficient and consistent estimates.

Publisher

Science Publishing Group

Reference20 articles.

1. Abdelaziz, Q. and Zoglat, A. (2011). Discriminating between normal and Gumbel distributions.

2. Abouelmagd, T. H. M., and Hamed, M. S. (2018). The Burr X Frechet distribution with its properties and applications. Journal of Applied Probability and Statistics, 13(1): 23-51.

3. Afify, A. Z., and Zayed, M. (2018). The extended exponential distribution and its application. Journal of Statistical Theory and Applications, 17(2): 213-229.

4. Anwar, H., Dar, I. H., and Lone, M. A. (2022). A novel family of generating distributions based on Marshall Olkin transformation with an application to exponential distribution. Pak. J. Statist, 38(1): 113-128.

5. Coles, S. (2001).An introduction to statistical modeling of extreme values. Springer-Verlag.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3