Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating

Author:

Fazlali Paria1,Tahernejad Mahrokh2,Biglari Leila3,Eslami Mahla4

Affiliation:

1. Department of Biomedical Engineering, Medical Tehran Branch, Islamic Azad University, Teran, Iran

2. Department of Biomedical Engineering, Research and Science Branch, Islamic Azad University, Tehran, Iran

3. Department of Biomedical Engineering, University of Shahrekord, Shahrekord, Iran

4. Department of Biomedical Engineering, Nooshirvani University, Mazandaran, Iran

Abstract

In this research, Polycaprolactone-graphene oxide Nanocomposite coating was synthesized and characterized by Electrospinning on Ti6AL4V alloy. In order to create a uniform coating with optimal thickness, the effective parameters of Electrospinning coating, including solvent, polymer concentration, and bioceramic percentage, were investigated. Also, the cytotoxicity and corrosion tests were evaluated by the electrochemical polarization test method of the created coating in comparisons and different percentages. In order to characterize the coating, a test such as a scanning electron microscope was used. The results showed that as much as the amount of Graphene oxide is increased, the diameter of Nanofibers decreases. The diameter of Polycaprolactone Nanofibers was 1.3 micrometers, which increases to 56.0 micrometers by adding Graphene oxide. The results of the corrosion test showed that the use of Nano composite coating increased the corrosion resistance to the size of the coating. The nanocomposite coating consists of polycaprolactone nanofibers and graphene oxide, which mimics the behavior of the extracellular matrix and improves the biological and antibacterial behavior of the titanium surface. So far, there has been no report on the creation of this fibrous nanocomposite coating on titanium. The results of the cytotoxicity test showed that the use of Nanocomposite coating has effectively reduced the cytotoxicity on the scaffolds. By creating a polycaprolactone-graphene oxide nanofiber composite coating, the biological and antibacterial properties of titanium alloy will be improved and its corrosion resistance will probably change. In this project, the main question is extracting effective parameters in creating a composite coating on titanium surface by electrospinning method and characterizing and biological evaluation of the created coating.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3