Impacts of Climate Change on Streamflow on Dawa Sub-watershed, Genale-Dawa River Basin, Southern Ethiopia

Author:

Bulti Ayana1ORCID,Abegaz Fentaw2

Affiliation:

1. Oromia Agricultural Research Institute, Mechara Agricultural Research Center, Department of Irrigation and Drainage Engineering, Mechara, Ethiopia

2. Independent Scholar, Adama, Ethiopia

Abstract

<i>Climate change is statistical variations over an extended period in the features of the climate system, such as variations in global temperatures and precipitation, caused by human and natural sources.</i> In this study aimed to measure and examine how streamflow in the Dawa sub-basin, Genale Dawa River basin was affected by climate change. It used the average of five regional climate models from the Coordinated Regional Climate Downscaling Experiment (CORDEX) Africa, under two different scenarios of Representative Concentration Pathways: RCP4.5 and RCP8.5. The baseline scenario was based on the data from 1975 to 2005, while the future scenarios were based on the data from 2020s (2025–2054) and 2050s (2055–2084). The HBV hydrological model used to assess the impact on streamflow. The HBV model showed good statistical performance in simulating the impact of climate change on streamflow, with a coefficient of determination (R<sup>2</sup>) of 0.88 and Nash-Sutcliffe Efficiency (NSE) of 0.77 for monthly calibration, and R<sup>2</sup> of 0.86 and NSE of 0.83 for monthly validation. The impacts quantified using the mean monthly changes in precipitation, maximum and minimum temperatures. The bias-corrected precipitation and temperature showed a reasonable increase in both future periods for both RCP 4.5 and RCP 8.5 scenarios. These changes in climate variables resulted in a decrease in mean annual streamflow by 1.6 and 3.5% for RCP 4.5 and by 4.6 and 4.9% for RCP 8.5 scenarios of the 2020s and 2050s, respectively. Based on the analysis that predicted a drop in precipitation during the months, and seasons and an increase in precipitation during the <i>Belg</i> season, with a corresponding decrease and rise in stream flow throughout the watershed. So to offset the variation in the watershed, community should adopt various; Soil and water conservation technologies, Using drought tolerant crops, Implementing various trees and appropriate design and applying a water harvesting structure like in-situ, internal or micro catchment, external or macro catchment water harvesting and Surface runoff harvesting. This result offers useful information for current and future water resource management in the basin and similar other watershed in the country.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3