Affiliation:
1. Independent Researcher, Charlotte, North Carolina, USA
Abstract
The representation of integers by prime factorization, proved by Euclid in the Fundamental Theorem of Arithmetic −also referred to as the Prime Factorization Theorem− although universal in scope, does not provide insight into the algebraic structure of primes themselves. No such insight is gained by summative prime factorization either, where a number can be represented as a sum of up to three primes, assuming Goldbach’s conjecture is true. In this paper, a third type of factorization is introduced, called hybrid prime factorization, defined as the representation of a number as sum −or difference− of two products of primes with no common factors between them. By using hybrid factorization, primes are expressed as algebraic functions of other primes, and primality is established by a single algebraic condition. Following a hybrid factorization approach, sufficient conditions for the existence of Goldbach pairs are derived, and their values are algebraically evaluated, based on the symmetry exhibited by Goldbach primes around their midpoint. Hybrid prime factorization is an effective way to represent, predict, compute, and analyze primes, expressed as algebraic functions. It is shown that the sequence of primes can be generated through an algebraic process with evolutionary properties. Since prime numbers do not follow any predetermined pattern, proving that they can be represented, computed and analyzed algebraically has important practical and theoretical ramifications.
Reference19 articles.
1. Loconsole, M., Regolin, L. Are prime numbers special? Insights from the life sciences. Biol Direct 17, 11 (2022). https://doi.org/10.1186/s13062-022-00326-w
2. S. Torquato, G. Zhang and M. de Courcy-Ireland, “Uncovering multiscale order in the prime numbers via scattering”, Journal of Statistical Mechanics: Theory and Experiment, (2018) 093401, September 2018. https://doi.org/10.1088/1742-5468/aad6be
3. P. Billingsley, “Prime Numbers and Brownian Motion”, The American Mathematical Monthly, vol. 80, 1973, pp. 1099-1115. [Online]. Available: https://maa.org/programs/maa-awards/writing-awards/prime-numbers-and-brownian-motion
4. K. D. Thomas, “From Prime Numbers to Nuclear Physics and Beyond”, The Institute of Advanced Study (IAS), 2013. [Online]. Available: https://www.ias.edu/ideas/2013/primes-random-matrices
5. Wikipedia, "Montgomery's pair correlation conjecture" [Online]. Available: https://en.wikipedia.org/w/index.php?title=Montgomery%27s_pair_correlation_conjecture&oldid=1194579064
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献