Novel Biomaterial-Derived Activated Carbon from Lippia Adoensis (Var. Koseret) Leaf for Efficient Organic Pollutant Dye Removal from Water Solution

Author:

Mengesha Mesele1,Shuka Yohannes2ORCID,Eyoel Tesfahun1ORCID,Tesfaye Tekalign3

Affiliation:

1. Department of Chemistry, Wolaita Soddo University, Wolaita Soddo, Ethiopia

2. Department of Chemistry, Madda Walabu University, Bale Robe, Ethiopia

3. Department of Chemistry, Mettu University, Illbabur, Ethiopia

Abstract

Today, various pollutants, such as dyes from industries, are being released into the environment worldwide, posing significant challenges that require sustainable attention and advanced solutions. This research focuses on the synthesis and characterization of a novel biomaterial-based activated carbon (AC) derived from Lippia Adoensis (Koseret) leaves and investigates its effectiveness in removing MB from aqueous solutions. The biomaterial adsorbent derived from LA was subjected to proximate analysis, pH-point zero charge (pHpzc), FT-IR, and SEM characterization. The pHpzc results indicated a slightly acidic surface functional group for AC. The impact of temperature and chemical impregnation (H<sub>3</sub>PO<sub>4</sub>, NaCl and NaOH) was examined, with the optimal temperature of AC preparation found to be 600°C. The use of H<sub>3</sub>PO<sub>4</sub> for the chemical activation of biomaterials resulted in a high AC surface area. Batch adsorption experiments involved varying pH (2–10), dosage (0.1–0.35 g/50ml), initial concentration (10–35 ppm) and contact time (15–105 min). The optimal parameters were determined as pH = 8, dose = 0.25g, concentration = 10 ppm, and contact time = 75 min. The maximum adsorption capacity and removal efficiency were calculated as 3.99 and 92.2%, respectively. Thermodynamic analysis confirmed the spontaneous and endothermic nature of the system. Adsorption isotherm and kinetic studies revealed a good fit with the Langmuir isotherm (R<sup>2</sup>= 0.999), indicating monolayer adsorption and the pseudo-second order model, respectively. These findings suggest that the use of LA-AC could offer a cost-effective solution for the removal of methylene blue from water, contributing to the solution of water pollution challenges and promoting the adoption of eco-friendly wastewater treatment technologies.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3