Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury

Author:

Takahashi Hiroshi,Manaka Shinya,Sano Keiji

Abstract

✓ A high potassium concentration ([K+]o) in brain tissue impedes neuronal activity, as observed in spreading cortical depression. Experimental studies were performed on mice and rats to determine the role of changes of [K+]o in cerebral concussion. In the first experiment, a 600 gm-cm impact was delivered to the vertex of the mouse skull. This impact induced arrest of spontaneous movement for 465 ± 55.9 seconds (mean ± SD), accompanied by apnea, bradycardia, and low-voltage electroencephalographic recordings (EEG). The injury was also frequently followed immediately by epilepsy. This impact induced an increase of cortical [K+]o from the control level of 4.1 ± 1.8 mM to 20–30 mM, with gradual recovery within 30 minutes to the control level. In the second experiment, an impact of 9000 gm-cm was delivered to the midline parieto-occipital area of the rat and produced concussion-like phenomena similar to those elicited in mice. This level of trauma induced a significant increase of cortical [K+]o from the control level of 4.2 ± 0.8 mM to 20–50 mM in all of the rats, and also a significant increase of brain-stem [K+]o from 3.9 ± 0.6 to 20–30 mM in 73% of the rats. In these latter rats, the impact also induced apnea and a transient elevation of blood pressure, and resulted in low-voltage EEG recordings. In 23% of the rats in which [K+]o changes in the brain stem were not significant, the impact caused a transient reduction of blood pressure. The present study disclosed that an increase of [K+]o in the cerebral cortex and also in the brain stem is an important element in the phenomenon of concussion.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3