Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target

Author:

Hsu Wesley1,Mohyeldin Ahmed1,Shah Sagar R.12,ap Rhys Colette M.1,Johnson Lakesha F.1,Sedora-Roman Neda I.1,Kosztowski Thomas A.1,Awad Ola A.3,McCarthy Edward F.4,Loeb David M.3,Wolinsky Jean-Paul1,Gokaslan Ziya L.1,Quiñones-Hinojosa Alfredo1

Affiliation:

1. Department of Neurosurgery and Oncology, Brain Tumor Stem Cell Laboratory,

2. Department of Biomedical Engineering,

3. Department of Oncology and Pediatrics, Musculoskeletal Tumor Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland

4. Department of Pathology, and

Abstract

Object Chordoma is a malignant bone neoplasm hypothesized to arise from notochordal remnants along the length of the neuraxis. Recent genomic investigation of chordomas has identified T (Brachyury) gene duplication as a major susceptibility mutation in familial chordomas. Brachyury plays a vital role during embryonic development of the notochord and has recently been shown to regulate epithelial-to-mesenchymal transition in epithelial-derived cancers. However, current understanding of the role of this transcription factor in chordoma is limited due to the lack of availability of a fully characterized chordoma cell line expressing Brachyury. Thus, the objective of this study was to establish the first fully characterized primary chordoma cell line expressing gain of the T gene locus that readily recapitulates the original parental tumor phenotype in vitro and in vivo. Methods Using an intraoperatively obtained tumor sample from a 61-year-old woman with primary sacral chordoma, a chordoma cell line (JHC7, or Johns Hopkins Chordoma Line 7) was established. Molecular characterization of the primary tumor and cell line was conducted using standard immunostaining and Western blotting. Chromosomal aberrations and genomic amplification of the T gene in this cell line were determined. Using this cell line, a xenograft model was established and the histopathological analysis of the tumor was performed. Silencing of Brachyury and changes in gene expression were assessed. Results The authors report, for the first time, the successful establishment of a chordoma cell line (JHC7) from a patient with pathologically confirmed sacral chordoma. This cell line readily forms tumors in immunodeficient mice that recapitulate the parental tumor phenotype with conserved histological features consistent with the parental tumor. Furthermore, it is demonstrated for the first time that silencing of Brachyury using short hairpin RNA renders the morphology of chordoma cells to a more differentiated-like state and leads to complete growth arrest and senescence with an inability to be passaged serially in vitro. Conclusions This report represents the first xenograft model of a sacral chordoma line described in the literature and the first cell line established with stable Brachyury expression. The authors propose that Brachyury is an attractive therapeutic target in chordoma and that JHC7 will serve as a clinically relevant model for the study of this disease.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3