The presence of 4-hydroxynonenal/protein complex as an indicator of oxidative stress after experimental spinal cord contusion in a rat model

Author:

Baldwin Stanley A.,Broderick Richard,Osbourne David,Waeg Georg,Blades Deborah A.,Scheff Stephen W.

Abstract

Object. The authors tested the hypothesis that breach of the blood—spinal cord barrier (BSCB) will produce evidence of oxidative stress and that a similar staining pattern will be seen between 4-hydroxynonenal (HNE)/protein complexes and extravasated immunoglobulin G (IgG). Methods. Adult female Fischer 344 rats, each weighing 200 to 225 g, were subjected to a spinal cord contusion at T-10 by means of a weight-drop device. Spinal cord tissue was assessed for oxidative stress by localizing extravasated plasma contents with a monoclonal antibody for rat IgG and protein conjugation with HNE, which is an aldehyde byproduct of lipid peroxidation. The animals were killed at 1 and 6 hours, and 1, 2, and 7 days after surgery. Maximum HNE/protein staining was observed at 2 days postinjury, and HNE/protein and IgG manifested similar staining patterns. Analysis revealed a graduated but asymmetrical rostral—caudal response relative to the T-10 injury site. Both HNE/protein complex and IgG staining revealed that the caudal levels T-11 and T-12 stained significantly more intensely than the rostral levels T-9 and T-8, respectively. A higher percentage of neurons positive for HNE/protein immunostaining was observed in spinal cord levels caudal to the injury site compared with equidistant rostral regions. Protein dot-blot assays also revealed a similar asymmetrical rostral—caudal HNE/protein content. To analyze the timing of the BSCB breach, another group of animals received identical contusions, and horseradish peroxidase (HRP) was injected 10 minutes before or at various times after injury (1, 3, and 6 hours, and 1, 2, and 7 days). Maximum HRP permeability was seen immediately after injury, with a significant decrease occurring by 1 hour and a return to control levels by 2 days posttrauma. Conclusions. Data from this study indicate possible compromise of neuronal, axonal, glial, and synaptic function after trauma, which may be a factor in motor deficits seen in animals after spinal cord contusion. The colocalization of the IgG stain with the HNE/protein stain is consistent with the hypothesis of a mutual cause—effect relationship between BSCB and oxidative stress in central nervous system trauma.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3