Asymmetry index in anatomically symmetrized FDG-PET for improved epileptogenic focus detection in pharmacoresistant epilepsy

Author:

Aslam Shameer1,Damodaran Natesan2,Rajeshkannan Ramiah3,Sarma Manjit4,Gopinath Siby1,Pillai Ashok2

Affiliation:

1. Departments of Neurology,

2. Neurosurgery,

3. Radiology, and

4. Nuclear Medicine, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, Kerala, India

Abstract

OBJECTIVE Positron emission tomography (PET) imaging has assumed an essential role in the presurgical evaluation of epileptogenic foci in drug-resistant epilepsy by identifying the hypometabolic cerebral cortex. The authors herein designed a pilot study to test a novel technique of PET asymmetry after anatomical symmetrization coregistered to MRI (PASCOM), utilizing interhemispheric metabolic asymmetry on interictal fluorine 18–labeled fluorodeoxyglucose (FDG)-PET to better localize the epileptogenic zone. METHODS The authors analyzed interictal FDG-PET scans from 23 patients with drug-resistant epilepsy, mean (± SD) age 20.9 ± 13.1 years old, who had an Engel class I postsurgical outcome while followed up for > 12 months. T1-weighted and FLAIR MRI were used to create a patient-specific, structurally symmetrical template. The asymmetry index (AI) image was computed to detect the cerebral region of hypometabolism using different z-score threshold criteria to optimize sensitivity and specificity. The detected regions were compared with the resection cavity on postoperative MRI using predefined anatomical labels. PASCOM was compared with the visual analysis of FDG-PET by a nuclear medicine consultant blinded to other clinical data (VIS) and visual analysis during multidisciplinary team discussion (MDT). The efficacy of each technique was compared based on a performance score (S), sensitivity, specificity, and correct lateralization of epileptogenicity. RESULTS The mean S was maximum (1.30 ± 1.23) for AI images when thresholded at z > 4 and retaining the cluster of more than 100 voxels containing the peak AI value (Z4C) with 73.03% sensitivity and 96.43% specificity. The mean S was minimum for VIS (0.27 ± 0.31). The mean sensitivity was maximum for MDT (85.04%) and minimum for Z5C (AI images thresholded at z > 5 and clustered; 59.47%), whereas the mean specificity was maximum for Z5C (97.77%) and minimum for VIS (64.60%). Z3C (AI images thresholded at z > 3 and clustered) and Z4C were able to correctly identify the side of epileptogenicity in all the patients. CONCLUSIONS The PASCOM technique with a Z4C threshold had a maximum performance score with good sensitivity and specificity in localizing and lateralizing the epileptogenic zone. The described technique outperformed the conventional visual analysis of FDG-PET and hence warrants further prospective verification.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference27 articles.

1. Presurgical evaluation of epilepsy;Rosenow F,2001

2. Brain 18F-FDG-PET: utility in the diagnosis of dementia and epilepsy;Lotan E,2020

3. Neuroimaging of epilepsy;Cendes F,2016

4. Functional neuroimaging in epilepsy: FDG PET and ictal SPECT;Lee DS,2001

5. Clinical FDG-PET findings in patients with temporal lobe epilepsy: concordance with EEG and MRI;Jaisani Z,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3