Revision characteristics of cement-augmented, cannulatedfenestrated pedicle screws in the osteoporotic vertebral body: a biomechanical in vitro investigation

Author:

Blattert Thomas R.,Glasmacher Stefan,Riesner Hans-Joachim,Josten Christoph

Abstract

In generalized osteoporosis, instrumentation with cement-augmented pedicle screws is an amplification of the therapeutic spectrum. Early clinical results are promising for both solid and cannulated screws; however, there are concerns regarding the revision characteristics of these screws, especially for the cannulated-fenestrated type with its continuous cement interconnection from the core of the screw to surrounding bone tissue. In a human cadaver model, bone mineral density (BMD) was assessed radiographically. Spinal levels T9–L4 were instrumented left unilaterally, transpedicularly by using cannulated-fenestrated pedicle screws with the dimensions 6.5 × 45 mm. Polymethylmethacrylate cement (1.5 ml) was injected through the screws into each vertebra. After polymerization of the cement, the extraction torque was recorded. For both implantation and explantation of the screws, a fluoroscope was used to guarantee correct screw and cement positioning and to observe possible co-movements—that is, any movement of the cement mass within the vertebral body upon removal of the screw. For comparison, the extraction torque of same-dimension pedicle screws was recorded in a nonosteoporotic, non–cement-augmented instrumentation. The BMD was 0.60 g/cm2, a level that corresponds to a severe grade of osteoporosis. For removal of the screws, the median and mean extraction torques were 34 and 49 ± 44 Ncm, respectively. No co-movements of the cement mass occurred within the vertebral body. In the nonosteoporotic control, BMD was 1.38 g/cm2. The median and mean extraction torques were 123 and 124 ± 12 Ncm, respectively. Thus, the revision characteristics of cement-augmented, cannulated-fenestrated pedicle screws are not problematic, even in cases of severe osteoporosis. The winglike cement interconnection between the screw core and surrounding bone tissue is fragile enough to break off in the event of an extraction torque and to release the screw. There is no proof to support the theoretical fear that while trying to remove a screw, the composite of screw and cement would not break but instead would rotate as a whole in the osteoporotic vertebral body.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3