Exacerbation of traumatically induced axonal injury by rapid posthypothermic rewarming and attenuation of axonal change by cyclosporin A

Author:

Suehiro Eiichi,Povlishock John T.

Abstract

Object. Although considerable attention has been focused on the use of posttraumatic hypothermia, little consideration has been given to the issue of posthypothermic rewarming and its potentially damaging consequences. In this communication, the authors examine the issue of rapid posthypothermic rewarming compared with gradual rewarming while exploring the potential utility of cyclosporin A (CsA) administration for attenuating any rapid rewarming—induced axonal change. Methods. Male Sprague—Dawley rats were subjected to impact-acceleration injury and then their body temperature was lowered to 32°C for 1 hour postinjury. After hypothermia, rewarming to normothermic levels was accomplished either within a 20-minute period (rapid rewarming) or over a 90-minute period (slow rewarming). Some animals in the rapid rewarming group received intrathecal infusion of either CsA or its vehicle, whereas the rats in the slow rewarming group received vehicle alone. Both the CsA and its vehicle were administered immediately before initiation of rewarming. Twenty-four hours postinjury the animals' brains were processed for visualization of amyloid precursor protein (APP), a marker of traumatic axonal injury. The APP-positive axonal density in the gradually rewarmed group receiving vehicle was statistically significantly reduced in comparison with the rapidly rewarmed, vehicle-treated group. For the group undergoing rapid rewarming and treatment with CsA, a statistically significant reduction was also found in the density of the APP profiles compared with the rapidly rewarmed, vehicle-treated group. Conclusions. The results of this study show that rapid rewarming exacerbates traumatically induced axonal injury, which can be significantly attenuated by administering CsA.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3