Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury

Author:

Bakshi Ajay,Fisher Omar,Dagci Taner,Himes B. Timothy,Fischer Itzhak,Lowman Anthony

Abstract

Object. Spinal cord injury (SCI) is a complex pathological entity, the treatment of which requires a multipronged approach. One way to integrate different therapeutic strategies for SCI is to develop implantable scaffolds that can deliver therapies in a synergistic manner. Many investigators have developed implantable “bridges,” but an important property of such scaffolds—that is, mechanical compatibility with host tissues—has been neglected. In this study, the authors evaluated the results of implanting a mechanically matched hydrogel-based scaffold to treat SCI. Methods. A nonbiodegradable hydrogel, poly(2-hydroxyethylmethacrylate) (PHEMA), was engineered using thermally initiated free radical solution polymerization. Two groups of 12 adult Sprague—Dawley rats underwent partial cervical hemisection injury followed by implantation of either PHEMA or PHEMA soaked in 1 µg of brain-derived neurotrophic factor (BDNF). Four rats from each group were killed 1, 2, or 4 weeks after induction of the injury. Immunofluorescence staining was performed to determine the presence of scarring, cellular inflammatory responses, gliosis, angiogenesis, and axonal growth in and around the implanted scaffolds. Conclusions. The implanted PHEMA with 85% water content had a compressive modulus of 3 to 4 kPa, which matched the spinal cord. Implanted PHEMA elicited modest cellular inflammatory responses that disappeared by 4 weeks and minimal scarring was noted around the matrix. Considerable angiogenesis was observed in PHEMA, and PHEMA soaked in BDNF promoted axonal penetration into the gel. The authors conclude that mechanically engineered PHEMA is well accepted by host tissues and might be used as a platform for sustained drug delivery to promote axonal growth and functional recovery after SCI.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3