A proposed parent vessel geometry—based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture

Author:

Hassan Tamer,Timofeev Eugene V.,Saito Tsutomu,Shimizu Hiroaki,Ezura Masayuki,Matsumoto Yasushi,Takayama Kazuyoshi,Tominaga Teiji,Takahashi Akira

Abstract

Object. The authors created a simple, broadly applicable classification of saccular intracranial aneurysms into three categories: sidewall (SW), sidewall with branching vessel (SWBV), and endwall (EW) according to the angiographically documented patterns of their parent arteries. Using computational flow dynamics analysis (CFDA) of simple models representing the three aneurysm categories, the authors analyzed geometry-related risk factors such as neck width, parent artery curvature, and angulation of the branching vessels. Methods. The authors performed CFDAs of 68 aneurysmal geometric formations documented on angiograms that had been obtained in patients with 45 ruptured and 23 unruptured lesions. In successfully studied CFDA cases, the wall shear stress, blood velocity, and pressure maps were examined and correlated with aneurysm rupture points. Statistical analysis of the cases involving aneurysm rupture revealed a statistically significant correlation between aneurysm depth and both neck size (p < 0.0001) and caliber of draining arteries (p < 0.0001). Wider-necked aneurysms or those with wider-caliber draining vessels were found to be high-flow lesions that tended to rupture at larger sizes. Smaller-necked aneurysms or those with smaller-caliber draining vessels were found to be low-flow lesions that tended to rupture at smaller sizes. The incidence of ruptured aneurysms with an aspect ratio (depth/neck) exceeding 1.6 was 100% in the SW and SWBV categories, whereas the incidence was only 28.75% for the EW aneurysms. Conclusions. The application of standardized categories enables the comparison of results for various aneurysms' geometric formations, thus assisting in their management. The proposed classification system may provide a promising means of understanding the natural history of saccular intracranial aneurysms.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3