Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms

Author:

Ferguson Gary G.

Abstract

✓ An investigation using glass models disclosed that the apex of a bifurcation is subjected to hemodynamic forces which may initiate the aneurysmal process by producing focal destruction of the internal elastic membrane. A prediction from model studies that turbulence occurs within intracranial aneurysms was confirmed in a clinical study. Bruits, indicative of turbulent blood flow, were recorded from the sacs of 12 of 19 cases studied at the time of craniotomy. Turbulence causes degenerative changes that weaken the wall of an aneurysm and allow it to enlarge. Measurement in four cases revealed that intra-aneurysmal pressure is the same as systemic arterial pressure. An in vitro study of the static elastic properties of human intracranial aneurysms demonstrated that they are relatively nondistensible in comparison to major intracranial arteries. This altered elasticity reflects the destruction of the elastic tissue in the wall of an aneurysm. An analysis of the physical factors influencing whether an aneurysm ruptures showed that the probability of rupture increases with an increase in intra-aneurysmal pressure, an increase in aneurysmal size, a decrease in the minimum wall thickness of an aneurysm, or a decrease in the strength of its structural components.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 380 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3