Beat-to-beat continuous blood pressure estimation with optimal feature set of PPG and ECG signals using deep recurrent neural networks

Author:

Chen Hanjie,Lyu Liangyi,Zeng Zezhen,Jin Yanwei,Zhang YuantingORCID

Abstract

Aim: Continuous blood pressure (BP) monitoring can provide invaluable information for cardiovascular disease (CVD) diagnosis. The purpose of this study is to develop a deep recurrent neural network (RNN) model with an optimal feature set of photoplethysmogram (PPG) and electrocardiogram (ECG) signals for continuous BP estimation. Methods: This paper presents a novel deep recurrent neural network (RNN), which consists of 2-layered bidirectional Long Short-term Memory (Bi-LSTM) and 6-layered LSTM networks. It is used to estimate BP based on the optimal feature set of PPG and ECG signals. In this work, the optimal feature set is determined using five different feature selection methods. Results: The proposed method is evaluated based on 660 subjects from the University of California Irvine (UCI) machine learning repository. The RNN model with optimal feature set achieved root mean square error (RMSE) of 3.223 and 1.781 mmHg for systolic BP (SBP) and diastolic BP (DBP), respectively. It also showed mean absolute error (MAE) of 2.514 and 1.383 mmHg for SBP and DBP, respectively. Regarding the British Hypertension Society (BHS) standard, the results attained grade A for the estimation of SBP and DBP. Conclusion: The experimental results suggest that the proposed deep RNN model with an optimal feature set can improve the performance of BP prediction. Thus, it is possible to further apply our proposed method to develop a wearable device for real-time BP monitoring.

Publisher

OAE Publishing Inc.

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3