Stiffness-tunable and shape-locking soft actuators based on 3D-printed hybrid multi-materials

Author:

Abstract

Soft actuators have been receiving tremendous attention as a result of their excellent adaptability to the environment. However, due to their inherently low stiffness, soft actuators are difficult to adapt to high-load tasks. Despite previous efforts in developing stiffness-tunable actuators by utilizing variable stiffness materials, they still suffer from limitations, including relatively low load and locking capacity to grasp weights and difficulties regarding their fabrication with complex structures. This work reports a novel stiffness-tunable and shape-locking soft (Tri-S) actuator using hybrid multi-material 3D printing. The Tri-S actuator consists of polylactic acid, thermoplastic polyurethane and a flexible carbon fiber heating wire. Its stiffness can be effectively tuned by Joule heating. A soft robotic gripper equipped with three Tri-S actuators demonstrates their stiffness-tunable and shape-locking capability by grasping and holding objects of various shapes and weights. The gripper can grasp weights up to 2.2 kg with an external driving force by tuning the stiffness and hold weights up to 310 g depending on its own shape locking without an external driving power source.

Publisher

OAE Publishing Inc.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3