Construction and ultrasonic inspection of the high-capacity Li-ion battery based on the MnO2 decorated by Au nanoparticles anode

Author:

An Cuihua,Wang Shikang,Lin Liyang,Ding Xiangyan,Deng QiboORCID,Hu Ning

Abstract

Lithium (Li)-ion batteries have become one of the main energy sources for electric vehicles and energy storage systems, which puts forward higher requirements for the detection of battery state of health (SOH). The SOH of batteries is crucial for areas such as battery management and renewable energy storage. Accurately evaluating the SOH of batteries can optimize charging and discharging strategies and extend battery life. Therefore, accurately and effectively monitoring the SOH of Li batteries is of great significance. An ultrasonic testing technology has been proposed that can non-destructively test the Li battery SOH, enabling accurate judgment of batteries in poor or damaged conditions. Firstly, the hetero-structured MnO2-Au has been constructed as the anode for Li-ion batteries. MnO2-Au heterojunction enhances electronic conductivity and ion conductivity. The MnO2-Au has exhibited high specific capacity and superior rate performances, which can well satisfy the ultrasonic inspection of the battery. Then, the ultrasonic testing has been conducted on batteries with different ages. The results suggest that batteries with short circuits have the highest nonlinear coefficient, while batteries with short circuits after long cycles have the lowest nonlinear coefficient. The nonlinear coefficient of batteries with different charging and discharging states is in the middle.

Publisher

OAE Publishing Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3