Influence of kinks on the interaction energy between ferroelastic domain walls in membranes and thin films

Author:

Lu Guangming,Hideo Kimura,Ding Xiangdong,Xu Zhijun,Chu Ruiqing,Nataf Guillaume F.,Salje Ekhard K. H.

Abstract

In thin samples, such as membranes, kinks inside ferroelastic domain walls interact through “dipolar” interactions following a 1/d 2 decay, where d is the distance between the walls. Simultaneously, the samples relax by bending. Bending is not possible in thick samples or can be suppressed in thin films deposited on a rigid substrate. In these cases, wall-wall interactions decay as 1/d , as monopoles would do. In free-standing samples, we show a wide crossover regime between “dipolar” 1/d 2 interactions and “monopolar” 1/d interactions. The surfaces of all samples show characteristic relaxation patterns near the kink, which consists of ridges and valleys. We identify the sample bending as the relevant image force that emanates from kinks inside walls in thin samples. When samples are prevented from bending by being attached to a substrate, the dipolar force is replaced by “monopolar” forces, even in thin samples. These results are important for transmission electron microscopy imaging, where the typical sample size is in the dipolar range while it is in the monopolar range for the bulk.

Publisher

OAE Publishing Inc.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3