Borides as promising M2AX phase materials with high elastic modulus using machine learning and optimization

Author:

Mhadeshwar Ashwin,Mohanty TruptiORCID,Sparks Taylor D.ORCID

Abstract

There is growing interest in novel MAX phase materials for various applications ranging from aircraft/spacecraft and defense to energy and electronics due to their unique combination of metallic and ceramic properties. Traditional materials discovery has mostly relied on human intuition coupled with rigorous experiments; however, this approach has been time-consuming and inefficient. Over the last few decades, advances in fundamental and data-driven approaches such as first-principles modeling, materials informatics, machine learning and optimization, coupled with an exponential rise in computational power, have enabled faster and more efficient materials discovery. Here, we present an exploration of high elastic modulus novel boride-based M2AX phase materials using a combination of the aforementioned methods. Specifically, an ensemble of gradient boosted machine learning models was developed to predict the elastic modulus from informatics-based structural features by leveraging a dataset of Density Functional Theory (DFT)-predicted elastic moduli for 223 M2AX phase materials (carbides and nitrides). Using Bayesian optimization, inverse modeling was carried out to maximize the model-predicted elastic modulus by identifying the optimal features. Finally, model predictions for 1,035 candidate M2AX materials were generated to compare their features with the optimal features to identify potential novel promising materials. We found that Ta2PB, Nb2PB, and V2PB have similar high elastic moduli (371.7, 351.5, and 347.4 GPa) to their carbide counterparts (364.7, 357.7, and 373.5 GPa), and our results support the possibility that borides can be a viable tertiary element for M2AX phases.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3