Domain knowledge-guided interpretive machine learning: formula discovery for the oxidation behavior of ferritic-martensitic steels in supercritical water

Author:

Cao Bin,Yang Shuang,Sun Ankang,Dong Ziqiang,Zhang Tong-Yi

Abstract

A general formula with high generalization and accurate prediction power is highly desirable for science, technology and engineering. In addition to human beings, artificial intelligence algorithms show great promise for the discovery of formulas. In this study, we propose a domain knowledge-guided interpretive machine learning strategy and demonstrate it by studying the oxidation behavior of ferritic-martensitic steels in supercritical water. The oxidation Cr equivalent is, for the first time, proposed in the present work to represent all contributions of alloying elements to oxidation, derived by our domain knowledge and interpretive machine learning algorithms. An open-source tree classifier for linear regression algorithm is also, for the first time, developed to materialize the formula with collected data. This algorithm effectively captures the linear correlation between compositions, testing environments and oxidation behaviors from the data. The sure independence screening and sparsifying operator algorithm finally assembles the information derived from the tree classifier for linear regression algorithm, resulting in a general formula. The general formula with the determined parameters has the power to predict, quantitatively and accurately, the oxidation behavior of ferritic-martensitic steels with multiple alloying elements exposed to various supercritical water environments, thereby providing guidance for the design of anti-oxidation steels and hence promoting the development of power plants with improved safety. The present work demonstrates the power of domain knowledge-guided interpretive machine learning with respect to the data-driven discovery of physics-informed formulas and the acceleration of materials informatics development.

Funder

National Key Research and Development Program of China

Key Program of Science and Technology of Yunnan Province

Key Research Project of Zhejiang Laboratory

Shanghai Pujiang Program

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3