Author:
Li Zhutao,Zhao Xinxin,Yang Jue,Liu Menglei
Abstract
Under certain working conditions, the car-following performance and longitudinal ride comfort of adaptive cruise control (ACC) vehicles are contradictory. Therefore, the extension coordinated control is introduced into the weighted design of each performance index under the model predictive control (MPC) framework to optimize the overall vehicle driving performance. In this article, the dynamic model of the ACC vehicle and the variable time headway model are established, and then the predictive model and its corresponding cost function under the MPC framework are designed. By using the co-simulation platform of CarSim and Matlab/Simulink, three different simulation conditions are established and compared with the traditional ACC operating results. It was determined that the tracking speed error in the acceleration stage can be reduced by approximately 40% and the acceleration amplitude can be reduced by between 8%–17%. Therefore, there is an optimization effect under this control method. This study provides a foundation for curving ACC under an extension coordinated control theory.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative analysis of different spacing policies for longitudinal control in vehicle platooning;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-08-28