Selective electroreduction of CO2 to C2+ products on cobalt decorated copper catalysts

Author:

Soodi Sanaz,Zhang Jun-Jun,Zhang Jie,Liu Yuefeng,Lashgari Mohsen,Zafeiratos Spyridon,Züttel Andreas,Zhao Kun,Luo Wen

Abstract

Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) to multi-carbon (C2+) products is often plagued by low selectivity because the adsorption energies of different reaction intermediates are in a linear scaling relationship. Development of Cu-based bimetallic catalysts has been considered as an attractive strategy to address this issue; however, conventional bimetallic catalysts often avoid metals with strong CO adsorption energies to prevent surface poisoning. Herein, we demonstrated that limiting the amount of Co in CuCo bimetallic catalysts can enhance C2+ product selectivity. Specifically, we synthesized a series of CuCox catalysts with trace amounts of Co (0.07-1.8 at%) decorated on the surface of Cu nanowires using a simple dip coating method. Our results revealed a volcano-shaped correlation between Co loading and C2+ selectivity, with the CuCo0.4% catalyst exhibiting a 2-fold increase in C2+ selectivity compared to the Cu nanowire sample. In situ Raman and Infrared spectroscopies suggested that an optimal amount of Co could stabilize the Cu oxide/hydroxide species under the CO2RR condition and promote the adsorption of CO, thus enhancing the C2+ selectivity. This work expands the potential for developing Cu-based bimetallic catalysts for CO2RR.

Publisher

OAE Publishing Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3