Bioactive biodegradable polycaprolactone implant for management of osteochondral defects: an experimental study

Author:

Popkov A. V.1ORCID,Gorbach E. S.1ORCID,Gorbach E. N.1ORCID,Kononovich N. A.1ORCID,Kireeva E. A.1ORCID,Popkov D. A.1ORCID

Affiliation:

1. Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Abstract

Introducrion Repair of the affected articular surface still remains an unsolved problem.The purpose of this study was to assess the efficacy of a biodegradable polycaprolactone implant coated with hydroxyapatite on the healing of an osteochondral defect of the femoral condyle in rats.Materials and methods An osteochondral defect of the medial femoral condyle was modeled in 76 Wistar rats divided into 2 groups. In the experimental group, the defect was replaced with a biodegradable polycaprolactone membrane coated with hydroxyapatite. In the control group, the defect remained untreated. The results were assessed within a year.Results In the experimental group, the animals had a significantly better range of motion at all stages of the experiment than the control animals. The implant ensured the integrity and congruence of the articular surface. On day 180, a newly formed area of the articular surface of the organotypic structure was observed in the defect. Biomechanical properties of the repaied zone restored after 60 days while in the control one they remained lower by 27-29 %.Discussion Filling the defect with an elastic implant made of polyprolactone with hydroxyapatite provided early functional load on the joint. The structure of the implant, simulating the extracellular matrix, promoted the growth, proliferation and directed differentiation of cells in the area of the osteochondral defect. The moderate rate of biodegradability of the material provided gradual replacement of the implant with organ-specific tissues.Conclusion A biodegradable polycaprolactone implant impregnated with hydroxyapatite particles might be effective for experimental osteochondral defect repair.

Publisher

Russian Ilizarov Scientific Centre Restorative Traumatology and Orthopaedics

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3