Study of oxidative phosphorylation and glycolysis in CD4<sup>+</sup>T lymphocytes of HIV/HCV coinfected immunological non-responders by means of the seahorse technology

Author:

Korolevskaya Larisa B.ORCID,Vlasova Violetta V.,Shmagel Nadezhda G.,Saidakova Evgeniya V.

Abstract

Oxidative phosphorylation and glycolysis are essential for CD4+ T-lymphocyte survival, division, and functioning. However, indirect evidence suggests that in HIV-positive hepatitis C virus (HCV) coinfected immunological non-responders to antiretroviral therapy, the CD4+ T-cell metabolic activity parameters are violated. This information implies that in immunological non-responders, CD4+ T-lymphocytes' inability to productively divide and increase in number after viral suppression by antiretroviral drugs may be due to metabolic dysfunction. The newly released technology for the analysis of extracellular fluxes using seahorse XF equipment permits assessment of the cells metabolic activity. The aim of this study was to evaluate the efficiency of oxidative phosphorylation and glycolysis in CD4+ T-lymphocytes of HIV/HCV coinfected immunological non-responders using Seahorse technology. Peripheral blood samples from patients of two groups were studied: HIV/HCV coinfected immunological non-responders with CD4+ T-lymphocyte count less than 350/l and HIV/HCV coinfected immunological responders with CD4+ T-cell count more than 500/l. In isolated CD4+ T-lymphocytes, the basal and maximal oxygen consumption rates by complexes of the mitochondrial electron transport chain, as well as the rate of medium acidification by protons formed during glycolysis, were assessed. It has been established that in HIV/HCV coinfected immunological non-responders, both basal and maximal oxygen consumption rates by CD4+ T-cell mitochondria are reduced. Moreover, in isolated CD4+ T-lymphocytes of immunological non-responders, the basal rate of glycolysis is increased. It can be assumed that a significant part of CD4+ T-lymphocytes in HIV/HCV coinfected immunological non-responders is activated and ready for homeostatic proliferation, which aggravates the need for additional energy and macromolecules. However, cells are unable to change their metabolism in a coordinated manner to meet these demands. The identified dysregulation of metabolic pathways may contribute to the low regenerative capacity of CD4+ T-lymphocytes in HIV/HCV coinfected immunological non-responders.

Publisher

Russian Society of Immunology

Subject

Immunology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3