Machine Learning Applications in Mental Health and Substance Use Research Among the LGBTQ2S+ Population: Scoping Review (Preprint)

Author:

Kundu AnasuaORCID,Chaiton MichaelORCID,Billington RebeccaORCID,Grace DanielORCID,Fu RuiORCID,Logie CarmenORCID,Baskerville BruceORCID,Yager ChristinaORCID,Mitsakakis NicholasORCID,Schwartz RobertORCID

Abstract

BACKGROUND

A high risk of mental health or substance addiction issues among sexual and gender minority populations may have more nuanced characteristics that may not be easily discovered by traditional statistical methods.

OBJECTIVE

This review aims to identify literature studies that used machine learning (ML) to investigate mental health or substance use concerns among the lesbian, gay, bisexual, transgender, queer or questioning, and two-spirit (LGBTQ2S+) population and direct future research in this field.

METHODS

The MEDLINE, Embase, PubMed, CINAHL Plus, PsycINFO, IEEE Xplore, and Summon databases were searched from November to December 2020. We included original studies that used ML to explore mental health or substance use among the LGBTQ2S+ population and excluded studies of genomics and pharmacokinetics. Two independent reviewers reviewed all papers and extracted data on general study findings, model development, and discussion of the study findings.

RESULTS

We included 11 studies in this review, of which 81% (9/11) were on mental health and 18% (2/11) were on substance use concerns. All studies were published within the last 2 years, and most were conducted in the United States. Among mutually nonexclusive population categories, sexual minority men were the most commonly studied subgroup (5/11, 45%), whereas sexual minority women were studied the least (2/11, 18%). Studies were categorized into 3 major domains: web content analysis (6/11, 54%), prediction modeling (4/11, 36%), and imaging studies (1/11, 9%).

CONCLUSIONS

ML is a promising tool for capturing and analyzing hidden data on mental health and substance use concerns among the LGBTQ2S+ population. In addition to conducting more research on sexual minority women, different mental health and substance use problems, as well as outcomes and future research should explore newer environments, data sources, and intersections with various social determinants of health.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3