Continuous Critical Respiratory Parameter Measurements Using a Single Low-Cost Relative Humidity Sensor: Evaluation Study (Preprint)

Author:

Vaussenat FabriceORCID,Bhattacharya AbhiroopORCID,Payette JulieORCID,Benavides-Guerrero Jaime AORCID,Perrotton AlexandreORCID,Gerlein Luis FelipeORCID,Cloutier Sylvain GORCID

Abstract

BACKGROUND

Accurate and portable respiratory parameter measurements are critical for properly managing chronic obstructive pulmonary diseases (COPDs) such as asthma or sleep apnea, as well as controlling ventilation for patients in intensive care units, during surgical procedures, or when using a positive airway pressure device for sleep apnea.

OBJECTIVE

The purpose of this research is to develop a new nonprescription portable measurement device that utilizes relative humidity sensors (RHS) to accurately measure key respiratory parameters at a cost that is approximately 10 times less than the industry standard.

METHODS

We present the development, implementation, and assessment of a wearable respiratory measurement device using the commercial Bosch BME280 RHS. In the initial stage, the RHS was connected to the pneumotach (PNT) gold standard device via its external connector to gather breathing metrics. Data collection was facilitated using the Arduino platform with a Bluetooth Low Energy connection, and all measurements were taken in real time without any additional data processing. The device’s efficacy was tested with 7 participants (5 men and 2 women), all in good health. In the subsequent phase, we specifically focused on comparing breathing cycle and respiratory rate measurements and determining the tidal volume by calculating the region between inhalation and exhalation peaks. Each participant's data were recorded over a span of 15 minutes. After the experiment, detailed statistical analysis was conducted using ANOVA and Bland-Altman to examine the accuracy and efficiency of our wearable device compared with the traditional methods.

RESULTS

The perfused air measured with the respiratory monitor enables clinicians to evaluate the absolute value of the tidal volume during ventilation of a patient. In contrast, directly connecting our RHS device to the surgical mask facilitates continuous lung volume monitoring. The results of the 1-way ANOVA showed high <i>P</i> values of .68 for respiratory volume and .89 for respiratory rate, which indicate that the group averages with the PNT standard are equivalent to those with our RHS platform, within the error margins of a typical instrument. Furthermore, analysis utilizing the Bland-Altman statistical method revealed a small bias of 0.03 with limits of agreement (LoAs) of –0.25 and 0.33. The RR bias was 0.018, and the LoAs were –1.89 and 1.89.

CONCLUSIONS

Based on the encouraging results, we conclude that our proposed design can be a viable, low-cost wearable medical device for pulmonary parametric measurement to prevent and predict the progression of pulmonary diseases. We believe that this will encourage the research community to investigate the application of RHS for monitoring the pulmonary health of individuals.

Publisher

JMIR Publications Inc.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3