Prediction of Critical Care Outcome for Adult Patients Presenting to Emergency Department Using Initial Triage Information: An XGBoost Algorithm Analysis (Preprint)

Author:

Yun HyoungjuORCID,Choi JinwookORCID,Park Jeong HoORCID

Abstract

BACKGROUND

The emergency department (ED) triage system to classify and prioritize patients from high risk to less urgent continues to be a challenge.

OBJECTIVE

This study, comprising 80,433 patients, aims to develop a machine learning algorithm prediction model of critical care outcomes for adult patients using information collected during ED triage and compare the performance with that of the baseline model using the Korean Triage and Acuity Scale (KTAS).

METHODS

To predict the need for critical care, we used 13 predictors from triage information: age, gender, mode of ED arrival, the time interval between onset and ED arrival, reason of ED visit, chief complaints, systolic blood pressure, diastolic blood pressure, pulse rate, respiratory rate, body temperature, oxygen saturation, and level of consciousness. The baseline model with KTAS was developed using logistic regression, and the machine learning model with 13 variables was generated using extreme gradient boosting (XGB) and deep neural network (DNN) algorithms. The discrimination was measured by the area under the receiver operating characteristic (AUROC) curve. The ability of calibration with Hosmer–Lemeshow test and reclassification with net reclassification index were evaluated. The calibration plot and partial dependence plot were used in the analysis.

RESULTS

The AUROC of the model with the full set of variables (0.833-0.861) was better than that of the baseline model (0.796). The XGB model of AUROC 0.861 (95% CI 0.848-0.874) showed a higher discriminative performance than the DNN model of 0.833 (95% CI 0.819-0.848). The XGB and DNN models proved better reclassification than the baseline model with a positive net reclassification index. The XGB models were well-calibrated (Hosmer-Lemeshow test; <i>P</i>&gt;.05); however, the DNN showed poor calibration power (Hosmer-Lemeshow test; <i>P</i>&lt;.001). We further interpreted the nonlinear association between variables and critical care prediction.

CONCLUSIONS

Our study demonstrated that the performance of the XGB model using initial information at ED triage for predicting patients in need of critical care outperformed the conventional model with KTAS.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3