An Ethical Perspective on The Democratization of Mental Health with Generative Artificial Intelligence (Preprint)

Author:

Elyoseph ZoharORCID,Gur Tamar,Haber Yuval,Simon Tomer,Angert Tal,Navon Yuval,Tal AmirORCID,Asman OrenORCID

Abstract

UNSTRUCTURED

Knowledge has become more open and accessible to a large audience with the "democratization of information" facilitated by technology. This paper provides an ethical perspective on utilizing Generative Artificial Intelligence (GenAI) for the democratization of mental health knowledge and practice. It explores the historical context of democratizing information, transitioning from restricted access to widespread availability due to the internet, open-source movements, and most recently, GenAI technologies such as Large Language Models (LLMs). The paper highlights why GenAI technologies represent a new phase in the democratization movement, offering unparalleled access to highly advanced technology as well as information. In the realm of mental health, this requires a delicate and nuanced ethical deliberation. Including GenAI in mental health may allow, among other things, improved accessibility to mental health care, personalized responses, conceptual flexibility, and could facilitate a flattening of traditional hierarchies between health care providers and patients. At the same time, it also entails significant risks and challenges that must be carefully addressed. To navigate these complexities, the paper proposes a strategic questionnaire for assessing AI based mental health applications. This tool evaluates both the benefits and the risks, emphasizing the need for a balanced and ethical approach for GenAI integration in mental health. The paper calls for a cautious yet positive approach to GenAI in mental health, advocating for the active engagement of mental health professionals in guiding GenAI development. It emphasizes the importance of ensuring that GenAI advancements are not only technologically sound but also ethically grounded and patient centered.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3