ChatGPT as a Tool for Medical Education and Clinical Decision-Making on the Wards: Case Study

Author:

Skryd AnthonyORCID,Lawrence KatharineORCID

Abstract

Background Large language models (LLMs) are computational artificial intelligence systems with advanced natural language processing capabilities that have recently been popularized among health care students and educators due to their ability to provide real-time access to a vast amount of medical knowledge. The adoption of LLM technology into medical education and training has varied, and little empirical evidence exists to support its use in clinical teaching environments. Objective The aim of the study is to identify and qualitatively evaluate potential use cases and limitations of LLM technology for real-time ward-based educational contexts. Methods A brief, single-site exploratory evaluation of the publicly available ChatGPT-3.5 (OpenAI) was conducted by implementing the tool into the daily attending rounds of a general internal medicine inpatient service at a large urban academic medical center. ChatGPT was integrated into rounds via both structured and organic use, using the web-based “chatbot” style interface to interact with the LLM through conversational free-text and discrete queries. A qualitative approach using phenomenological inquiry was used to identify key insights related to the use of ChatGPT through analysis of ChatGPT conversation logs and associated shorthand notes from the clinical sessions. Results Identified use cases for ChatGPT integration included addressing medical knowledge gaps through discrete medical knowledge inquiries, building differential diagnoses and engaging dual-process thinking, challenging medical axioms, using cognitive aids to support acute care decision-making, and improving complex care management by facilitating conversations with subspecialties. Potential additional uses included engaging in difficult conversations with patients, exploring ethical challenges and general medical ethics teaching, personal continuing medical education resources, developing ward-based teaching tools, supporting and automating clinical documentation, and supporting productivity and task management. LLM biases, misinformation, ethics, and health equity were identified as areas of concern and potential limitations to clinical and training use. A code of conduct on ethical and appropriate use was also developed to guide team usage on the wards. Conclusions Overall, ChatGPT offers a novel tool to enhance ward-based learning through rapid information querying, second-order content exploration, and engaged team discussion regarding generated responses. More research is needed to fully understand contexts for educational use, particularly regarding the risks and limitations of the tool in clinical settings and its impacts on trainee development.

Publisher

JMIR Publications Inc.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3