Unlocking the Secrets Behind Advanced Artificial Intelligence Language Models in Deidentifying Chinese-English Mixed Clinical Text: Development and Validation Study

Author:

Lee You-QianORCID,Chen Ching-TaiORCID,Chen Chien-ChangORCID,Lee Chung-HongORCID,Chen PeitszORCID,Wu Chi-ShinORCID,Dai Hong-JieORCID

Abstract

Background The widespread use of electronic health records in the clinical and biomedical fields makes the removal of protected health information (PHI) essential to maintain privacy. However, a significant portion of information is recorded in unstructured textual forms, posing a challenge for deidentification. In multilingual countries, medical records could be written in a mixture of more than one language, referred to as code mixing. Most current clinical natural language processing techniques are designed for monolingual text, and there is a need to address the deidentification of code-mixed text. Objective The aim of this study was to investigate the effectiveness and underlying mechanism of fine-tuned pretrained language models (PLMs) in identifying PHI in the code-mixed context. Additionally, we aimed to evaluate the potential of prompting large language models (LLMs) for recognizing PHI in a zero-shot manner. Methods We compiled the first clinical code-mixed deidentification data set consisting of text written in Chinese and English. We explored the effectiveness of fine-tuned PLMs for recognizing PHI in code-mixed content, with a focus on whether PLMs exploit naming regularity and mention coverage to achieve superior performance, by probing the developed models’ outputs to examine their decision-making process. Furthermore, we investigated the potential of prompt-based in-context learning of LLMs for recognizing PHI in code-mixed text. Results The developed methods were evaluated on a code-mixed deidentification corpus of 1700 discharge summaries. We observed that different PHI types had preferences in their occurrences within the different types of language-mixed sentences, and PLMs could effectively recognize PHI by exploiting the learned name regularity. However, the models may exhibit suboptimal results when regularity is weak or mentions contain unknown words that the representations cannot generate well. We also found that the availability of code-mixed training instances is essential for the model’s performance. Furthermore, the LLM-based deidentification method was a feasible and appealing approach that can be controlled and enhanced through natural language prompts. Conclusions The study contributes to understanding the underlying mechanism of PLMs in addressing the deidentification process in the code-mixed context and highlights the significance of incorporating code-mixed training instances into the model training phase. To support the advancement of research, we created a manipulated subset of the resynthesized data set available for research purposes. Based on the compiled data set, we found that the LLM-based deidentification method is a feasible approach, but carefully crafted prompts are essential to avoid unwanted output. However, the use of such methods in the hospital setting requires careful consideration of data security and privacy concerns. Further research could explore the augmentation of PLMs and LLMs with external knowledge to improve their strength in recognizing rare PHI.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3