Artificial Intelligence–Based Methods for Integrating Local and Global Features for Brain Cancer Imaging: Scoping Review

Author:

Ali HazratORCID,Qureshi RizwanORCID,Shah ZubairORCID

Abstract

Background Transformer-based models are gaining popularity in medical imaging and cancer imaging applications. Many recent studies have demonstrated the use of transformer-based models for brain cancer imaging applications such as diagnosis and tumor segmentation. Objective This study aims to review how different vision transformers (ViTs) contributed to advancing brain cancer diagnosis and tumor segmentation using brain image data. This study examines the different architectures developed for enhancing the task of brain tumor segmentation. Furthermore, it explores how the ViT-based models augmented the performance of convolutional neural networks for brain cancer imaging. Methods This review performed the study search and study selection following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The search comprised 4 popular scientific databases: PubMed, Scopus, IEEE Xplore, and Google Scholar. The search terms were formulated to cover the interventions (ie, ViTs) and the target application (ie, brain cancer imaging). The title and abstract for study selection were performed by 2 reviewers independently and validated by a third reviewer. Data extraction was performed by 2 reviewers and validated by a third reviewer. Finally, the data were synthesized using a narrative approach. Results Of the 736 retrieved studies, 22 (3%) were included in this review. These studies were published in 2021 and 2022. The most commonly addressed task in these studies was tumor segmentation using ViTs. No study reported early detection of brain cancer. Among the different ViT architectures, Shifted Window transformer–based architectures have recently become the most popular choice of the research community. Among the included architectures, UNet transformer and TransUNet had the highest number of parameters and thus needed a cluster of as many as 8 graphics processing units for model training. The brain tumor segmentation challenge data set was the most popular data set used in the included studies. ViT was used in different combinations with convolutional neural networks to capture both the global and local context of the input brain imaging data. Conclusions It can be argued that the computational complexity of transformer architectures is a bottleneck in advancing the field and enabling clinical transformations. This review provides the current state of knowledge on the topic, and the findings of this review will be helpful for researchers in the field of medical artificial intelligence and its applications in brain cancer.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3