The Performance of Wearable AI in Detecting Stress Among Students: Systematic Review and Meta-Analysis

Author:

Abd-alrazaq AlaaORCID,Alajlani MohannadORCID,Ahmad RehamORCID,AlSaad RawanORCID,Aziz SarahORCID,Ahmed ArfanORCID,Alsahli MohammedORCID,Damseh RafatORCID,Sheikh JavaidORCID

Abstract

Background Students usually encounter stress throughout their academic path. Ongoing stressors may lead to chronic stress, adversely affecting their physical and mental well-being. Thus, early detection and monitoring of stress among students are crucial. Wearable artificial intelligence (AI) has emerged as a valuable tool for this purpose. It offers an objective, noninvasive, nonobtrusive, automated approach to continuously monitor biomarkers in real time, thereby addressing the limitations of traditional approaches such as self-reported questionnaires. Objective This systematic review and meta-analysis aim to assess the performance of wearable AI in detecting and predicting stress among students. Methods Search sources in this review included 7 electronic databases (MEDLINE, Embase, PsycINFO, ACM Digital Library, Scopus, IEEE Xplore, and Google Scholar). We also checked the reference lists of the included studies and checked studies that cited the included studies. The search was conducted on June 12, 2023. This review included research articles centered on the creation or application of AI algorithms for the detection or prediction of stress among students using data from wearable devices. In total, 2 independent reviewers performed study selection, data extraction, and risk-of-bias assessment. The Quality Assessment of Diagnostic Accuracy Studies–Revised tool was adapted and used to examine the risk of bias in the included studies. Evidence synthesis was conducted using narrative and statistical techniques. Results This review included 5.8% (19/327) of the studies retrieved from the search sources. A meta-analysis of 37 accuracy estimates derived from 32% (6/19) of the studies revealed a pooled mean accuracy of 0.856 (95% CI 0.70-0.93). Subgroup analyses demonstrated that the accuracy of wearable AI was moderated by the number of stress classes (P=.02), type of wearable device (P=.049), location of the wearable device (P=.02), data set size (P=.009), and ground truth (P=.001). The average estimates of sensitivity, specificity, and F1-score were 0.755 (SD 0.181), 0.744 (SD 0.147), and 0.759 (SD 0.139), respectively. Conclusions Wearable AI shows promise in detecting student stress but currently has suboptimal performance. The results of the subgroup analyses should be carefully interpreted given that many of these findings may be due to other confounding factors rather than the underlying grouping characteristics. Thus, wearable AI should be used alongside other assessments (eg, clinical questionnaires) until further evidence is available. Future research should explore the ability of wearable AI to differentiate types of stress, distinguish stress from other mental health issues, predict future occurrences of stress, consider factors such as the placement of the wearable device and the methods used to assess the ground truth, and report detailed results to facilitate the conduct of meta-analyses. Trial Registration PROSPERO CRD42023435051; http://tinyurl.com/3fzb5rnp

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3