German Medical Named Entity Recognition Model and Data Set Creation Using Machine Translation and Word Alignment: Algorithm Development and Validation

Author:

Frei JohannORCID,Kramer FrankORCID

Abstract

Background Data mining in the field of medical data analysis often needs to rely solely on the processing of unstructured data to retrieve relevant data. For German natural language processing, few open medical neural named entity recognition (NER) models have been published before this work. A major issue can be attributed to the lack of German training data. Objective We developed a synthetic data set and a novel German medical NER model for public access to demonstrate the feasibility of our approach. In order to bypass legal restrictions due to potential data leaks through model analysis, we did not make use of internal, proprietary data sets, which is a frequent veto factor for data set publication. Methods The underlying German data set was retrieved by translation and word alignment of a public English data set. The data set served as a foundation for model training and evaluation. For demonstration purposes, our NER model follows a simple network architecture that is designed for low computational requirements. Results The obtained data set consisted of 8599 sentences including 30,233 annotations. The model achieved a class frequency–averaged F1 score of 0.82 on the test set after training across 7 different NER types. Artifacts in the synthesized data set with regard to translation and alignment induced by the proposed method were exposed. The annotation performance was evaluated on an external data set and measured in comparison with an existing baseline model that has been trained on a dedicated German data set in a traditional fashion. We discussed the drop in annotation performance on an external data set for our simple NER model. Our model is publicly available. Conclusions We demonstrated the feasibility of obtaining a data set and training a German medical NER model by the exclusive use of public training data through our suggested method. The discussion on the limitations of our approach includes ways to further mitigate remaining problems in future work.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference62 articles.

1. Clinical Text Data in Machine Learning: Systematic Review

2. Modern Clinical Text Mining: A Guide and Review

3. Digitalizing Health Services by Implementing a Personal Electronic Health Record in Germany: Qualitative Analysis of Fundamental Prerequisites From the Perspective of Selected Experts

4. CarliniNTramèrFWallaceEJagielskiMHerbert-VossALeeKRobertsABrownTSongDErlingssonUOpreaARaffelCExtracting training data from large language modelsUsenix Association20212023-01-27https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3