Longitudinal Assessment of Seasonal Impacts and Depression Associations on Circadian Rhythm Using Multimodal Wearable Sensing: Retrospective Analysis

Author:

Zhang YuezhouORCID,Folarin Amos AORCID,Sun ShaoxiongORCID,Cummins NicholasORCID,Ranjan YatharthORCID,Rashid ZulqarnainORCID,Stewart CallumORCID,Conde PaulineORCID,Sankesara HeetORCID,Laiou PetroulaORCID,Matcham FaithORCID,White Katie MORCID,Oetzmann CarolinORCID,Lamers FemkeORCID,Siddi SaraORCID,Simblett SaraORCID,Vairavan SrinivasanORCID,Myin-Germeys InezORCID,Mohr David CORCID,Wykes TilORCID,Haro Josep MariaORCID,Annas PeterORCID,Penninx Brenda WJHORCID,Narayan Vaibhav AORCID,Hotopf MatthewORCID,Dobson Richard JBORCID,

Abstract

Background Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings. Objective This study aims to explore the associations between depression severity and wearable-measured circadian rhythms while accounting for seasonal impacts. Methods Data were sourced from a large longitudinal mHealth study, wherein participants’ depression severity was assessed biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants’ behaviors, including sleep, step count, and heart rate (HR), were tracked via Fitbit devices for up to 2 years. We extracted 12 circadian rhythm features from the 14-day Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR acrophase), and nonparametric features, such as the onset of the most active continuous 10-hour period (M10 onset). To investigate the association between depression severity and circadian rhythms while also assessing the seasonal impacts, we used three nested linear mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable, (2) adding seasonality, and (3) adding an interaction term between season and the PHQ-8 score. Results Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (n=414, 76.2% female; median age 48, IQR 32-58 years), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily steps (β=–93.61, P<.001), increased sleep variability (β=0.96, P<.001), and delayed circadian rhythms (ie, sleep onset: β=0.55, P=.001; sleep offset: β=1.12, P<.001; M10 onset: β=0.73, P=.003; HR acrophase: β=0.71, P=.001). Notably, the negative association with daily steps was more pronounced in spring (β of PHQ-8 × spring = –31.51, P=.002) and summer (β of PHQ-8 × summer = –42.61, P<.001) compared with winter. Additionally, the significant correlation with delayed M10 onset was observed solely in summer (β of PHQ-8 × summer = 1.06, P=.008). Moreover, compared with winter, participants experienced a shorter sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak time by 67.9 minutes during summer. Conclusions Our findings highlight significant seasonal influences on human circadian rhythms and their associations with depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3