Types of Errors Hiding in Google Scholar Data

Author:

Sauvayre RomyORCID

Abstract

Google Scholar (GS) is a free tool that may be used by researchers to analyze citations; find appropriate literature; or evaluate the quality of an author or a contender for tenure, promotion, a faculty position, funding, or research grants. GS has become a major bibliographic and citation database. For assessing the literature, databases, such as PubMed, PsycINFO, Scopus, and Web of Science, can be used in place of GS because they are more reliable. The aim of this study was to examine the accuracy of citation data collected from GS and provide a comprehensive description of the errors and miscounts identified. For this purpose, 281 documents that cited 2 specific works were retrieved via Publish or Perish software (PoP) and were examined. This work studied the false-positive issue inherent in the analysis of neuroimaging data. The results revealed an unprecedented error rate, with 279 of 281 (99.3%) examined references containing at least one error. Nonacademic documents tended to contain more errors than academic publications (U=5117.0; P<.001). This viewpoint article, based on a case study examining GS data accuracy, shows that GS data not only fail to be accurate but also potentially expose researchers, who would use these data without verification, to substantial biases in their analyses and results. Further work must be conducted to assess the consequences of using GS data extracted by PoP.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preparation of Publication Data for Mining in Scientific Review Process Management;2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM);2024-06-28

2. Reality or Illusion: Comparing Google Scholar and Scopus Data for Predatory Journals;portal: Libraries and the Academy;2024-01

3. Digital Evaluation of Undergraduates’ Knowledge about Scientific Research in Databases during the COVID-19 Pandemic;Education Sciences;2023-04-27

4. Databases, Search Engines;Synthesis Lectures on Information Concepts, Retrieval, and Services;2023

5. Researcher, author and reviewer profiles;Journal of the Royal College of Physicians of Edinburgh;2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3